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Aeroelastic Stability of Composite
Hingeless Rotor Blades in
Hover—Part I: Theory

M. V. Furton* AND D. H. HODGES
School of Aerospace Engineering, Georgia Institute of Technology
Atlanta, GA, U.S.A.

bstract—A finite-element-based stability analysis is presented for isolated hingeless, composite
tor blades in the hovering flight condition. The formulation is comprised of separate, but compati-
. cross-sectional (two-dimensional} and global or beam (one-dimensional) equations. The sectional
alyses used account for all possible deformation in the three-dimensional representation of the
lade. The global analysis is based on a mixed variational statement for the dynamics of moving
Beams; it can account for 6 x 6 cross-sectional stiffness and inertia matrices which, respectively, allow
the treatment of shear deformation and rotary inertia. There are no restrictions on the magnitudes
the displacements and rotations if the strain remains small compared to unity. The lift, drag, and
itching moment models are based on two-dimensional, quasi-steady strip theory, with induced in-
w taken from momentum theory. The equilibrium operating configuration of the blade is obtained
an iterative solution of the complete nonlinear equations. The dynamic equations are linearized
out this position, yielding an eigenproblem. In Part II, numerical results are presented for both
tension-twist and bending-twist coupled rotor blades, which indicate that certain “nonclassical”
couplings must be included in the analysis in general.

1. INTRODUCTION

Jackground and Motivation

copter rotor aeroelastic stability analyses have become increasingly complicated over the
due to changes in the geometric design and materials used in their construction; see [1].
g the early years of rotor development, designers used articulated rotor blades to provide
ctural load relief in both the flap and lead-lag directions at the root. In addition, a bearing
tated rotations about the spanwise axis for pitch changes. The successful design of these
1anisms was an important step towards helicopter flight.

hinges and bearings of articulated rotors, however, have certain drawbacks. Specifically,
‘hinges and bearings experience very high local stresses [2] which cause reduced life and,
fore, high maintenance, uncertainty, and cost. In addition, these rotors require the use
ead-lag dampers for stability. These dampers, of course, further increased the maintenance
ls, cost, weight, and complexity of the rotor system [1].

ngeless rotor blades do not have flap or lead-lag hinges, but they may retain the pitch
ring. The many potential advantages of the hingeless rotor, such as simplicity, reduced weight,
1 potential for improved flying qualities, could not be attained, however, without conquering
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a significant problem-—new aercelastic instabilities. Moreover, these instabilities could not
adequately predicted by existing rotor stability codes. Tn response to this challenge, ADPropy;
analytical advances in hingeless rotor stability analysis were made by undertaking ney appma{:&e
which entailed correctly accounting for geometrically nonlinear blade elastic de}formation& ®
For example, Hodges and Dowell [3] derived equations of motion that are valid for 4

1
. . . . ) , 1ende,
straight, homogeneous, isotropic beams undergoing moderate displacements. T,

Severa] Nonlineg,
structural and inertial terms in the final equations were identified that can subStantiaHy influey,
the aeroelastic stability of hingeless helicopter rotor blades. The Hap-lag-torsion analysig “;e
displacement-based and included no shear deformation. The final. simplified equations of Motioy
were obtained by the use of an “ordering scheme” for associating with each dependent Variable
an estimated order of magnitude and omitting all terins higher than second order (with o
exceptions). The concept of the ordering scheme, though an important method of the time, by
been more recently shown to be unnecessary [4].

With this model, for instance, the effects of precone, aerodynamic modeling, ang ﬁal}iag
structural coupling on stability were investigated. It was shown that Hap-lag elastic couplingg,
along with pitch-lag and pitch-flap couplings induced by geometrically nonlinear blade elastic
deformations, noticeably affect stability. Positive precone, for instance, was shown to affect
the equilibrium position, thereby modifying the pitch-lag and pitch-flap couplings and adversely

f

affecting stability while reducing equilibrium bending moments as desired [5].

Along with the change in rotor geometric design came changes in the materials. Jugt as the
old wooden blades had given way to metallic blades, so too were metallic blades giving way
to composite blades. The reasons were simple and clear: metallic blades were susceptible tq
corrosion, fatigue, and rapid crack propagation. With the advent of modern composites (such
as graphite-epoxy and boron-epoxy), materials were available to overcome the problems inherent
in metallic blades. Currently, several rotor designs are hingeless and are manufactured out of
composites {2,6].

Another industry-wide change, the development of the tiltrotor aircraft. has provided new
challenges for rotor stability analyses. This new challenge exists due to an attempt to optimize
the aerodynamic performance of these rotors for both hover and forward flight [7]. One solution
to this problem is available through the use of extension-twist coupling. That is, the change in
rotor speed from the hover condition to forward Hight provides a passive means for changing the
rotor blade’s twist distribution. .

Both the potential use of blades with elastic couplings (such as extension-twist) and the knowl-
edge that elastic couplings can substantially affect stability call for the development of analyses
capable of correctly modeling hingeless composite rotors. Such a development is the subject of
this paper.

1.2. Previous Work

Composite rotor blade modeling, as defined here. focuses entirely on the structural represer-
tation of the blade as exhibited in the cross-sectional elastic constants. [8] describes work done
through 1988 in this general area and reveals that such work fails into two categories. Analytical
approaches idealize the structural configuration to curved-sided or rectangular closed cells. It
these cases, one can extract cross-sectional elastic constants in closed form by following any of
several types of approximations, such as an overall restriction to uniaxial stress or a local restric-
tion to include only membrane stresses in the walls. Finite-element-based approaches, on the
other hand, allow the modeling of general structural configurations.

The first attempts to model composite rotor blade aeroelastic stability were those of Hong @d
Chopra [9]. This work modeled the blade as a box beam and. following the isotropic blade analys®
of [3], assumed uniaxial stress and suppressed shear deformation. The lack of transverse shedf
strain led the authors to an analvsis that omits both bending-shear and extension-shear coupling®
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Aeroelastic Stability—Part [

amina treatment did, however, permit the inclusion of extension-twist and
lings, along with extension-bending and bending-bending couplings. Results

hat dramatically different stability results could be obtained for composite
n the laminate design of the box beam walls.

been other works since then which have contributed to the modeling of com-
ew additional results have been obtained for aeroelastic stability of composite
recently. When trying to fill this research gap, mentioned by [10], one must
t evidence that transverse shear deformation and “nonclassical” effects such
yupling can be important for accurate predictions of composite beam behay-
ies that a new stability analysis should be developed that incorporates all of
code should then be validated and used to obtain new insights into composite
> will now discuss a subset of composite blade analyses with the motivation to
derstand the present contribution. We will not belabor the exclusively cross-
schemes reviewed in [8] except to note a few of those works which are closely
ent objectives.
analysis of Giavotto et al. [12] was reported by [8] to be the most general extant
and the authors believe that it is still true. Their analysis was recently updated
twist and curvature (see [13]). In principle, this sectional analysis, along with the
embodied in [14,15], is capable of modeling completely general composite blades.

au and Hong developed a nonlinear, large-displacement analysis for initially curved
mposite beams. The analysis represents the finite rotations of the beam by Euler
ré,in is assumed, along with a uniaxial stress state and moderate initial curvatures.
essary three-dimensional strains are augmented by the St. Venant torsional warping
in-walled composite cross-section as reported in [17], and the hoop stress has
~akin to [18]. The resulting displacement field is described by seven variables:
us, three rotations, and one out-of-plane torsional warping sectional “degree of
e importance of this higher-order out-of-plane deformation is stated to be more
composite materials than for isotropic materials. The resulting equations are
ing four-noded finite elements. Again, no results were presented for aeroelastic

“hopra, [19] presented a moderate deflection, finite-element-based analysis for the
esponse and blade loads of composite rotors in forward flight. The blade analysis
verse shear deformation and appropriate elastic couplings. The cross-sectional
nited to box beams and is based on [20]. The validation of the analysis is well-
As [9,19] demonstrate, a change in the material couplings can modify the damping
ag mode.

- [21] presented a finite-element-based aeroelastic stability analysis for pretwisted,
rotor blades in the hovering flight condition, including tip sweep and anhedral. The
| [22] and [23] as the bases for the kinematics of deformation. The analysis was sim-
gh the assumption of a uniaxial stress state and restriction to moderate deflections.
ement field included transverse shear and restrained, out-of-plane torsional warping,
¢ seven variables that describe the behavior of each reference cross-section. These
Tes were stated to be related to the one-dimensional forces through a constitutive

- to that of Kosmatka [24].

9] and [21] do provide aeroelastic stability results. See Part II for additional discussion
ksk

.

v
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1.3. Present Approach

In choosing an appropriate research emphasis in the field of rotor stability, sever

be recognized: ’ and tl
(1) hingeless (and bearingless) rotors have become and will probably remajp, . éynaﬂﬁ
(2) hingeless rotor stability has been found to be significantly affected by ro eglect 1

plings; the restr
(3) composite materials are widely being used in modern rotor blades; and h unc
(4) composite materials provide a natural means for aeroelastic tailoring, an be taken
the extension-twist coupled blades of [7]. eralized

In light of the discussion of previous work, where does this leave the state of th ause of

aeroelastic stability analyses have been developed which possess all the following

(1) Both sectional and beam analyses follow within one common framework fror
nonlinear, three-dimensional elasticity, accounting for all possible deform

(2) The sectional analysis is capable of treating general composite blades :
material couplings accounted for.

(3) The beam analysis is based on yeometrically exact equations (i.e., no ord
that the only approximations in the analysis arise from the treatment of
.a beam (which essentially affects only the accuracy of the one-dimension

model). allows

There exists a body of literature, chiefly in the former Soviet Union an ts and wi
Berdichevsky and his co-workers, in which a powerful framework for composi f previou:
sis is developed. Reference [25] appears to be the first in the literature to plainly s and ro

geometrically nonlinear problem of the three-dimensional theory of elasticity for a
be split into a nonlinear one-dimensional problem and a linear two-dimensional )
statement was made concerning homogeneous beams with certain material symm
cordance with this approach, the geometrically nonlinear three-dimensional strain
anisotropic, nonhomogeneous beam is replaced with an asymptotically equivalent o
strain energy, thus facilitating the derivation of an asymptotically correct constit
general, anisotropic, nonhomogeneous cross-section. The separation of the thr 7 ,
problem into two smaller problems (linear cross-sectional (i.e., two-dimensional) tion, the bl
global (i.e., one-dimensional) analyses) serves to reduce the computational difficult notations a
with general solutions of the complete three-dimensional problem. The metho .‘ imensional ¢
variational-asymptotical method (VAM). global anal;

The analysis of [26] presented and applied VAM to arbitrary composite rotor blad
the three-dimensional nonlinear kinematical formulation of [27] for small local rotatic ,
energy is written in terms of a 6 x 6 matrix of cross-sectional elastic constants of th Sectional /
as that of [12]. For static deformation of composite beams, it was shown that this m tion addresses
reduced to a 4 x 4 by minimization of the strain energy with respect to the transverse
measures. This is quite different from that which one obtains by simply setting these
shear measures equal to zero; this leads to a “classical” theory which is shown to
for composite rotor blades.

Similarly, [28] uses VAM to develop the 4 x 4 matrix directly for thin-walled com
which can be done only if all possible deformations are included in the three-dimensiot
tation. Their approach and the one of [26] provide essentially identical stiffnesses f
beams. Although there are some quantitative differences, stiffnesses from both ap
to static deflections and free-vibration frequencies which agree fairly well with those
stiffnesses of [12,18]. ;

A strain energy of the form of that from [26] leads directly to the set of equation
found in [4], which provides a nonlinear intrinsic formulation for the dynamics of ini

r, two-dime

d or suitably



Aeroelastic Stability—Part [ 5

in a moving frame. Small strains and local rotations were assumed, but
f the reference cross-section was represented exactly by Rodrigues parameters.
the six generalized strain measures were given in terms of the displacement of
e and the rotation of the reference cross-section. Next, the nonlinear, intrinsic,
| dynamic equilibrium equations were developed. These equations include ro-
neglect the kinetic energy associated with cross-sectional warping, which follows
he restriction to small strain. The equations are valid for initially curved and
with unconstrained warping. For a complete formulation, a material constitu-
be taken from the beam’s strain energy, which was assumed to be obtainable in
eralized strains alone. The complete formulation was called a “mixed variational
ecause of the appearance in the governing equations of unknown variables other
nts or rotations. Use of this formulation with any compatible sectional analysis
is for an aeroelastic stability analysis for composite rotor blades.
a composite rotor blade stability analysis based on a finite element solution of
mixed dynamic equations of Hodges [4] is developed. The aerodynamic forces were
o-dimensional quasi-steady strip theory with inflow taken from momentum/blade
the analysis is valid for hingeless, isolated rotor blades in hover. The cross-
esses were taken from codes based on [18,28]. The equilibrium configuration was
1, nonlinear form, and the dynamic solution was obtained for small motions about

, stability with transverse shear

effects and with complete use of all relevant elastic couplings. With this approach,

f previous analyses can be tested. In addition, new insights into the behavior of
ams and rotors can be pursued.

2. STRUCTURAL MODEL AND THEORY

ar, two-dimensional cross-sectional analysis, and
inear, one-dimensional global analysis.

on, the blade model will be described, along with all of the accompanying the-
otations and geometrical descriptions used in this work, see [4,27,29]. First, the
dimensional cross-sectional analysis will be discussed. Afterwards, the nonlinear one-
global analysis will be presented. Finally, some simplifying assumptions will be

~Sectional Analysis

ction addresses the linear, two-dimensional cross-sectional analysis through (1) its for-
and (2) various solution strategies.

ults obtained in [30] are compatible with the assumption by [4] and others that a

U=U/(y,x) (1)

ind or suitably approximated, where v (1) and & (z,) are the intrinsic strain measures
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The column matrix v contains the three strain measures at T2 =23 = 0; vy is ¢ ' rogram A‘I’?’
strain, while 2v;5 and 2v;3 are transverse shear strains. Similarly, the column mat on the analytic
the three curvatures due to deformation; k; is the elastic twist per unit length, w’ mecoticaﬂy e
are the elastic bending curvatures.

In addition, [4] stipulates that if two column matrices are defined 50 that element methe

rial distributi

A P oUNT by Marco Bor’

F=0F )= (-5;) ; ion Analysic

Fy ten by Carlos

Nt ou\T and VABS is

M=¢ M, ) = (5’;) ) NABSA'’s only
Ms

all four cross

' and ATWC
then the previous choice for v and « implies that F(z,) is the resultant force

cross-section at the reference line: Fj is the axial force, while F, and F3 are the sh
addition, M(z,) is the resultant moment: M, is the torsion moment, while M, an d
bending moments. both the one-

The relation between F, M, v, and s, which is compatible with equation (1), cq of equation ‘(
as The discussic

F1 _[A B Y » nelude with t
M| BT Dk’ :

where A, B, and D are 3 x 3 matrices of constants that can be calculated once for
section. (Note that these matrices should not be confused with those of plate theory
There is a nonlinear effect on the torsional stiffness which is nonnegligible for thip-
cross-sections, sometimes known as the trapeze effect. This phenomenon was mo:
using the approach of [31]; additional theoretical details can be found in [32]. More
the Dy of equation (4) was obtained by using the formula

lobal Analysi

bal analysis
of all the g

T -
Dy = (Dll)material + <D22A+ D33) Fh 55] 0
11
T 1/ aU
where F; is the equilibrium value of the axial force, whose coefficient reduces to the po +oy (5:
of inertia divided by the cross-sectional area for isotropic cases. In general, the 6
matrix is not only a function of the cross-section’s material distribution and geomet -6’ (I Q+
of the local curvature and twist of the beam. .
8P (v+a
2.1.2. Solution strategies
The above discussion basically reduces to the following question: Can a given cro - ',5]7?T A -+
stiffness characteristics be calculated? For the most general strategies, three things
known in order to perform this calculation: = ¢ 5T
(1) the cross-section’s geometry, _/g ( e

(2) the cross-section’s material distribution, and
(3) the initial twist and curvature of the beam at the cross-section under considera

If these three things are known, various methods can be used to calculate the stiffne
equation (4). As previously discussed, two principal solution techniques include (1) an
approach, and (2) a numerical approach.

The analysis of [18] was implemented in a computer program, TAIL, written by M
This program vividly demonstrates the power of analytical methods. Specifically, th
obtained by TAIL are very good for thin, closed, single cells, and are very easily an
generated; see [33]. The approach employed by TAIL is sufficient for situations in %
load bearing members of the blade can be accurately modeled with thin-walled appro

he column ma
the following
(in the undef
in the b basis),
lacement of t]
), 8; the angu
city of the y
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sther program ATWCS (Anisotropic Thin-Walled Closed Section—written by Ashraf Badir)
on the analytically-based method of [28]. ATWCS has all of the advantages of TAIL plus
ig a_symptotically exact. For more general configurations, however, other approaches need to
goed.

Finite element methods provide the modeling generality needed for arbitrary section geometry
3 material distribution. For example, a finite element implementation of [12] was designed and
tten by Marco Borri and his co-workers; it is called NABSA-—Nonhomogeneous Anisotropic
1 Section Analysis. In addition, VABS (Variational Asymptotical Beam Sectional analysis),
written by Carlos E. S. Cesnik and based upon [26]. The principal advantages of codes like
SA and VABS is their tremendous versatility. Because of its highly developed finite element
. NABSA's only limitations are computer storage capacity and run time.

[34], all four cross-sectional codes were used as appropriate. In Part IT of this paper, however,
ly TAIL and ATWCS stiffnesses were used.

&

; Global Analysis

.With both the one-dimensional strain energy of equation (1) and the corresponding constitutive
Jation of equation (4) having been established, it is now appropriate to discuss the global
alysis. The discussion will begin with a general description of the mixed variational formulation;
ill conclude with the solution strategy used in this work.

2.,1. Mixed variational formulation

_ The global analysis is based upon the mixed variational formulation of [4]. In this paper, the
weak form of all the governing equations was written as

A /ﬂ{ () -5 & -5 )| P () -5 K]
- Juy Jo )

(T T~ T~ T

U " vyt
(5:;) “F} e (5_) M
T

- 607 (10 + eV — H) +3 [el thu—CT (e + 7)} - (5F) i (6)

6T VT [/) (v- EQ) - P]

—T - —-’—T —_— g T A
~5P (v+ou-CTV) 18P u+5M (A+ g— + %) (Ck ~k — x) ~ (53T7) " 0

T g 087 T 7
_H (A+§+T)(rw~m+5ﬁ Hwéqrfméu‘)Tm}dmdt

_ / TR B A )
0 1

P S T
+/ (&; F 480 M-8F 4— &M E))Jﬁdt,

ty

?G'here the column matrices F', M, v, and & are as previously defined. Other quantities of interest
éndude the following column matrices whose elements are the measure numbers of the indicated
?ectors (in the undeformed, b, or deformed, B, basis): the curvature vector for the undeformed
?eam (in the b basis), k: the curvature vector for the deformed bearmn (in the B basis), K = k +k;
he displacement of the reference line (in the b basis), u; Rodrigues parameters (relating the b and
Bbases}, 0; the angular velocity of the undeformed beam cross-sectional frame (in the b basis), w

3 i

fhe velocity of the undeformed beam reference line (in the b basis), v; the angular velocity of
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the deformed beam cross-sectional frame (in the B basis), 2; the velocity of the
reference line (in the B basis), V; the section angular momentum (in the B basis), ]
linear momentum (in the B basis), P; the associated measures of virtual displacé
rotation, etc.; the position of the section mass center relative to the beam reference
basis), &; the section inertia matrix (in the b basis for the undeformed beam, which

that of the deformed beam in the B basis since warping is ignored in the inertia] ope:
distributed applied force per unit length (in the B basis), f: and the distributed apy
per unit length (in the B basis), m. Finally, ¢ is the blade’s length; p is the blad,
unit length; the () (hat) quantities are boundary terms; the mark r) denotes 3 ¢
operator; e; = [100]T; and A is the identity matrix. (For additional details, see [

. oh eiemel’lt. <
virttlﬂi quantit
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With this in 1
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hough the abc
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Hme on a Sun
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yusly sparse—2

2.2.2. Solution strategy

As stated in the introduction, the goal of the present paper is to provide an ana]
late the stability of various rotor configurations that are tailored through the use ¢
materials. The linear stability results can be obtained by linearization of the dyn
blade about its nonlinear equilibrium configuration, which is an adequate measure
provided that the dynamic motions are small in some sense.

In this work, the linear dynamics were calculated by assuming that the time
completely captured by a complex exponential factor. This method permits deca;
or growing oscillatory motions. To begin this formulation, the temporal integral of
should be removed; prior to doing this, however, the time derivatives are removed
8P, and 6H by integrating the appropriate terms by parts. This operation will shi
derivatives to P, H, u, and 6, respectively, along with adding new temporal boundarj}
The time integral and all of the temporal boundary conditions can now be removed,
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. o T . T _— B Y 4
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where the constitutive law of equation (4) has been used. For the cases analyzed in P
also assume that £ = 0 so that the undeformed beam reference line passes through t 15 al 3
sectional mass centers. Note that this assumption may not be suitable for some sectional and H terms of
programs which require a particular choice of the reference line. ,
all of the remaj

Finite element discretization Ynamics becom

With only a spatial integral remaining in equation (7), the beam can now be divided
one-dimensional elements of equal length, resulting in N + 1 nodes, with f.m, v, and
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Jlement. Spatial shape functions, valid within each element, can now be chosen
al quantity and dependent variable. Although shape functions of many different
missible, the integration will be simplified by choosing the simplest shape functions
h this in mind, we let the spatially differentiated quantities be taken to be linear,
ning variables being constant within each element [4]. The resulting equations are
and contain the unknowns u, 8, v, k, F, M, V, Q, P, and H, along with %, 8, P,
element. (For additional details, see [35]).
the above choice of “crude” shape functions might be thought to lead to long
times, they actually produce a code that runs quite well (approximately 90 seconds
on a Sun-4 for both the equilibrium and the eigen-solution with N = 16). In
ese simple functions, which facilitate the use of symbolic manipulation in writing
w for element quadrature by inspection and produce algebraic equations which are
sparse—a characteristic which is exploited.

ntial set of equations obtained by the finite element discretization can now be put
uitable form by separating the solution into two parts:
um, and
ic.
ation is performed by letting each unknown, ( ), be written as a sum of its equilibrium
plus its dynamic value, (), such as

y(t) =7 +ge",

some dependent variable and A is complex. This substitution implies that @ = \ue*t,
s relations for 6, P, and H.
e substitutions have been performed for each element and all terms have been ex-
equilibrium equations can be formulated by dropping all terms containing () terms.
ng equations will be nonlinear algebraic equations which can be solved by a standard
phson method.
n-Raphson technique, of course, requires the factorization of the Jacobian at each
f the solution. Our Jacobian, produced when using the simple shape functions de-
ve, is very sparse. This sparsity was exploited by using a sparse matrix linear equation
28, that is included in the Harwell numerical library [36]. In addition to exploiting
s subroutine can also save the decomposition pattern of a matrix. This technique pro-
putational savings when a matrix is given to MA28 that duplicates the sparsity pattern
y decomposed matrix—a common occurrence during Newton-Raphson iterations.

amic equations

silibrium solution can now be considered to be known. Specifically, all equilibrium
Ogous to ¥ in equation (8) are known, and the equations governing the dynamic (or
can be formulated. The formulation will be based upon dynamic equations that are
bout the nonlinear equilibrium.
late these dynamic equations, take the product of the Jacobian of the equilibrium
nd the dynamic column matrix, denoted by Y: add the terms arising from the 1,
terms of equation (7), and set this sum equal to zero. Now partition Y into two
8, Tg and Z4; let the variables that have time derivatives be grouped into %4, and
the remaining variables into Zs. With this grouping, the equation governing the

cs becomes
A, B. Ig — 0 0 T4
Cc Dc is - Fc 0 Is ’
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where A., B, C., D,, and F, are known, constant matrices that are functiong of

let bi = a; i
position. This matrix equation can be ultimately reduced to

: magnitude ;ch

1to 3), the
~A(BcDI'F) &4 = (A — B.D;'C,) 74,

where the assembly of equation (9) was designed such that D, would be nonsi
tion (10). '

The above linear equation can be solved as an eigenproblem. Specifically, the TN
subroutine DVCRG was used for calculating the complex eigenvalues (each of w
modal frequency and damping) and their corresponding complex eigenvectors
motions about the nonlinear equilibrium position.

ost general ca:

2.3. Simplifying Assumptions above ground

Thus far, the theory presented has been kept largely generic in order to facilitate
Here, however, the equations will be restricted by adopting certain assumptions
the blade’s geometry. Specifically, the blade is taken to be a cantilevered beam
precone, and constant initial twist, operating in hover. First, the kinetics and kin
simple blade will be described. Next, the boundary conditions will be discussed
forcing functions will be defined.

2.3.1. Rotor blade kinetics and kinematics

As previously mentioned, the reference line, r, was chosen such that it passes
undeformed beam’s mass centers, giving € = 0. In addition, by and bz were chose

b
to the principal axes, reducing I to a diagonal matrix. c
In addition, the beam’s undeformed geometry is known and fixed relative to &
a, whose motion is known relative to inertial space. The frame a is now défi
= w,3 ag, the

it is stationary except for some angular velocity with respect to inertial space;
w® = w,3az, where a is chosen to be vertically upward and w,3 is constant. Fin:
and az to complete the orthonormal, right-handed reference triad. (See Figure 1

o5

wa3 C%. Specif

tion, the columr
ame, v"i, wher

resents the posit
f CP leads to

r=(z; +

equation (17) can

— e ja—

——-—-—-—.—...._...x

Figure 1. Schematic of rotor (side view).

The reference frame b will now be chosen so as to permit constant initial twi
initial curvature (i.e., ky = k3 = 0). In addition, the beam will be allowed to ha
precone, By, and a hinge offset, e. With e specified, the position vector to the roo
rf;;:a = ea;. The complete description of ki and ., however, requires the s:
several direction cosine matrices.

=wh . b, as for
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b; = ai if Bpe = k1 = 0. Now, define a new frame ¢ that is related to a by a

agnitude Fpc about —ap. Specifically, if q; = C{" a; (note that repeated indices are

to 3), then

t0 3) cos Bpe 0 sinfpe

c = 0 10 |. (11)
—sinfp. 0 cosfpe

general case, b differs from q by a rotation 8, (z;) about q;. As before, if b; =

1 0 0
Ch =10 cosb, sinb,|. (12)
0 -—sinf, cosb,

(13)

bp = (Bp)g + z1 k1, (14)

Bpl,,—o being the blade’s “root pitch angle,” and with k; = 6, being a constant.
n (11) is substituted into equation (12), and if b; = Cf* a;, then

o8 Bpe 0 sin By
CP = | —sinf,sinfy,. cosb, sinf,cos Bpe | - (15)
—costpsin By, —sind, cosf,cos fpe

w,3 ag, the column matrix w can now be written in terms of 0, and Fp. by noting
a3 CY%. Specifically,

sin Gpc
W = We3 { 8iné,cosBpe . (16)
cos B, cos By

ion, the column matrix v contains the measure numbers in b of the velocity of r in an
ame, v®', where

L)

v = b

‘% T, (17

pi'esents the position vector from O of frame a to points on r, such that r = ea; + z;by;
f CY leads to

r = (z1 + ecos fp.) by — (esin b, sin Bye) be — (ecos 0y sin By ) bs. (18)

equation (17) can be written in matrix form as

0 —-Ww3 Wy T1 + ecos B
v= | ws 0  —uw ~esinfysin By o, (19)
~wp Wi 0 —ecos 0 sin Gy,

= wb . b, as found in equation (16). Simplification of equation (19) produces

0
U = we3 (7108 Bpe +€){ cosb, 3. (20)
—sinf,
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2.3.2. Boundary conditions is taken abou

atory terms. I
ations are ma

The boundary conditions for a cantilevered beam are quite straightforward, For
the beam be fixed at the root of the beam (z; = 0) and free at its tip (21 =4). Wit
it is well-known that the displacements and rotations are zero at the root, while th

moments at the tip are determined by the applied tip loads. These boundary

ent are transf
represented mathematically as

condi

lf(l} =0, md}’namic L
b0y =0, erodynamic 1if
and S - of the aerody
Eivyyy = F, develop som
Mnyyy = M,, he blade be «
L . . 2). Similar
wh ' are the given concentrated tip force and moment, respectively, be foil coordina
“ility problems. ith Z, paralle
L hi )
ctions e relationship
ot the f .z functions enter the equations for the i*™® element through some
(v ited foree per unit length, f,,
! moment per unit length, my, coordinate sy
) the ‘ed tip forces, Fi;) and Flityy, and pt for a rigid
1) the ¢. ‘ed tip moments, My and Miq). ion vector froi
Fi ‘ip mass. e force exerted on the beam by gravity should be represented as g
dead 1 " An additional force, however, arises when the mass accelerates. This inertj
be moc 1 by reformulating the kinetic energy used to derive equation (6). This mo

however, .. not necessary since all of the characteristics of the tip mass can be capture
modifications of the previously formed governing equations. ;

Specifically, the tip mass can be represented by a short, undeformable finite elemen
way, the inertial properties of the tip mass can be modeled and additional variables th
the motion of the tip mass can be introduced. To appropriately modify the governing
set yny = 0 and f(ny = 0, where N is the element number corresponding to the last
In addition, since the last element is now rigid, remove the six scalar equations that
constitutive law for this element. The resulting set of governing equations will now auto
account for the inertial reactions arising from the acceleration of the tip mass,

Figu
3. AERODYNAMIC MODEL AND THEORY ¢

It is becoming increasingly accepted that advanced aerodynamic modeling is impo
accurately predicting the stability of hingeless rotors under all operating conditions. T
of nonlinear aerodynamics, dynamic stall, and dynamic inflow are all important in vari
and stability regimes. These effects, however, are considered to be secondary to the
emphasis of this work. That is, the modifications in stability characteristics obtaina
elastic couplings, along with the evaluation of the structural portion of current stability ¢
is not nullified by these refined aerodynamic effects. Although these effects are import,
goals of the present paper can be met without their inclusion.

For the above reasons, a two-dimensional, quasi-steady lift theory is used. The inflow
upon momentum/blade element theory. This inflow is assumed to remain at its equilibri
during the blade’s small motions about the equilibrium position. .

The quasi-steady lift is obtained by use of the two-dimensional, steady lift-curve SIGkV
with the instantaneous angle of attack. This lift, along with the corresponding drag and

the aerodynan

F5 and MBE" ¢
;beam; more sp
gnify affects of -
Tespectively, t
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about the aerodynamic center of the airfoil and includes both circulatory and
rms. For offsets between the aerodynamic center and Tz = z3 = (, appropriate
re made to find the relative wind velocity, at the aerodynamic center, in terms of
generalized velocities and the inflow; finally, the resulting aerodynamic forces

mic Lift, Drag, and Moment

amic lift, drag, and moment equations are those which give the magnitude and
aerodynamic forces in terms of the relative wind velocity. To begin, it will be
p some notation. First, let the aerodynamic force acting on the aerodynamic

e be designated by F¥, where point Q is the aerodynamic center of the airfoil
imiiarly? the aerodynamic moment about @ is designated by M&. Next, let Z
ordinate system” whose center is placed at @Q; Zy and Zs are in the plane of the
parallel to the zero-lift line and directed towards the airfoil’s leading edge. We
tionship between Z; and B; in terms of a rotation of magnitude ag about By = Z 1,

1 0 0
C?8 = o cosa, sina, | . (23)
0 —sina, cosa,

inate system, the “wind coordinate system,” is represented as W and is identical
or a rigid rotation by the angle of attack o as shown in Figure 2. Finally, represent
ctor from B* (the origin of B) to Q as p9/B" = p2 By + p3 Bs.
o -
B
\ ‘\
a \
3 W\

A\
z

— h

Figure 2. Schematic of airfoil (looking towards the root of the blade).

the aerodynamic force and moment at B* are easily calculated as

| S
M7 =MQ + p@/B x FQ,

F? = L.W3 - DW, + L, Z,

25
M¢% = M,B,, (25)

a " and M5B are the aerodynamic components of f and m, the total applied loads acting
™M; more specifically, f = f,B,; = FB' gy andm = m;B; = MZ™ + ... where the
fy affects of forces of other than aerodynamic origin. The symbols L., D, L,., and M,
€spectively, the circulatory lift, drag, noncirculatory lift, and moment as given in Kunz
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and Hodges [37]:

L = %PooWgCCz + ‘;’PooCzWG;
D= *;'me2CCd,
1 T . 3c
M, = ‘2-,0’00"{/2626",, - i‘gpmca (WG + WZ;; + "§~
T . c .
Ly = ZPOOCQ (WZB + ZG) ’

where p., is the air density;
the airfoil, G is the flow velocity gradient, and
line; and ¢, ¢4, and ¢m are the lift, drag, and moment coefficients,
function of a, the angle of attack. Note that equation (26)
a quasi-steady adaptation of Greenberg’s thin-airfoil theory [38].
3.2. Relative Wind

If V9 is the inertial velocity of
radial station which corresponds to Q,

W=-V?,4,,
where .
V=V 4Qxp¥B
V = —vag.
Ifve

=U,;Z; and it is recognized that az =
of the airfoil section become

Wzg =W. Zg = “Uz - I/Caz

32
Wzz3 =W 23 = U - vCeE,
where
Uz = (V2 — Qp3) cosa, + (Vs + Qypy) sin ay,
U3 = - (VE - le3) Sinaa + (VS + QIPZ) COS (xq,

and C*Z can be found from
CaZ = Cab CT CBZ.

Finally, the flow velocity gradient, whose general definition is

OWz4
d(p2cosa, + pssin o)

G

can be simply expressed as

G=Q,.
3.3. Inflow

The inflow is calculated using the following equation from [39]:

oa / 3226
L"-‘—‘wagR(TG-) -1+ }.+*‘-—~G_aR s

was determined in

point Q (the aerodynamic center) and v ]
then the relative wind vector can be repre

C$Z Z;, then the components of V

the radius o

he a;-ag plar

of 6 was deter
then the airfoil
ince Zo - ag = C
maining quantit

is t

is the position 1
reference line a

ft, Drag, and M

attack by the eq

@ is the angle of af
it, such that ¢y = ¢

4. DISCU

ite-element-based
blades in the hover
ble, cross-sectiona

ements and rotatio
, as well as constitt
isted beams in a m

The formulation in
in terms of certair

®ctional analyses, so
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us of the rotor, o is the solidity, a is the lift-curve slope, z is the minimum
g axis to the point of interest, and 6 is the angle between the zero-lift line
¢ of rotation (see Figure 2).

h=C#a + CZ? ap represent the projection of Z (the zero-lift line unit
plane (i.e., the “plane of rotation”). Introduction of the rule of dot products

Zy-h ={Zs||h|cosb (35)

g = cos™! [V’ (C24)* + (c21)? ] sign (C4) . (36)

’determined based on the orientation of Z,: if the az component of Z; is
foil is pitched nose up; the sign of § can therefore be determined by the sign
= 0223“

quantities needed to calculate the inflow are

r= (R a1’ + (R as)’,

R=[z],,_, (37)
o be
TR

pbsition vector from point O (typically the center of rotation) to a point on the
ence line and b equals the number of rotor blades.

. and Moment Coefficients

ose of generating the results in Part II, the coefficient of lift, ¢, is related to the
by the equation

¢ =asina = amm_T———.Tme ==, (38)
VWzy + Wi,

e ailgle of attack; sincv > 0 when Wz3 > 0. The drag coefficient is taken to be a
ﬁh that ¢g = cq,. Finally, the pitching moment coeficient is assumed to be zero.

DISCUSSION AND CONCLUDING REMARKS

ment-based stability analysis has been presented for isolated hingeless, composite
~the hovering flight condition. The formulation is comprised of separate, but
{:ross—sectlona (two-dimensional) and global or beam (one-dimensional) equations.
rm of all the beam governing equations is used as the basis for the present analysis;
tions are in mixed form, so called because unknowns include quantities other than
nts and rotations. These weak, mixed equations include the intrinsic equations of
ell as constitutive and kinematical equations, for the dynamics of initially curved
beams in a moving frame [4]. The constitutive equations are valid for the case of
1 and small local rotation [27]. Otherwise, there are no explicit restrictions on the
f the beam’s displacement and rotation; that is, the beam analysis is geometrically
lormulation includes the effects of rotary inertia and assumes that a strain energy
terms of certain one-dimensional strain variables is given. In keeping with this strain
Umption, a symmetric 6 x 6 sectional stiffness matrix, which relates the one-dimensional
_moments to the strains and elastic curvatures, was used in the representation of the
in energy. The components of this stiffness matrix were calculated using various linear
nal analyses, some of which are capable of treating general composite blades with all
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possible material couplings accounted for, with the specific analysis being chosen
for each situation.

For the purpose of generating the results given in Part I1, the aerodynamic forceg
using quasi-steady strip theory with inflow taken from momentum /blade elemey
analysis is specialized for spanwise uniform blades with zero initial curvature, cop,
root offset, and a precone angle; additional configuration detail was included ip ¢
to clarify the implementation of the beam formulation used in this work.

For solving the equations for aeroelastic stability, one-dimensional finite eleme
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!?;gs of the 33
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facilitate the use of symbolic manipulation in writing the code. The resulting nonii
differential equations in time were solved by separating the solution into two pa“
equilibrium value plus a small dynamic value. Numerical solution of the resulting
Ibrium solution was performed by using the Newton-Raphson technique. Symbolje
was used to generate the Jacobian and residual needed by the Newton-Ra,phso
factorization of the Jacobian was performed using a sparse matrix routine. The ¢
governed by equations linearized about the equilibrium solution. The solution of
eigenproblem includes both complex eigenvalues (modal frequencies and dampings)
responding complex eigenvectors for these small dynamic motions. Validation
blade stability results are given in Part II.
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